

Welcome to Read the Docs

This is an autogenerated index file.

Please create an index.rst or README.rst file with your own content
under the root (or /docs) directory in your repository.

If you want to use another markup, choose a different builder in your settings.
Check out our Getting Started Guide [https://docs.readthedocs.io/en/latest/getting_started.html] to become more
familiar with Read the Docs.

Index

 # strawberry-django-plus

[![build status](https://img.shields.io/endpoint.svg?url=https%3A%2F%2Factions-badge.atrox.dev%2Fblb-ventures%2Fstrawberry-django-plus%2Fbadge%3Fref%3Dmaster&style=flat)](https://actions-badge.atrox.dev/blb-ventures/straw/goto?ref=master)
[![coverage](https://img.shields.io/codecov/c/github/blb-ventures/strawberry-django-plus.svg)](https://codecov.io/gh/blb-ventures/strawberry-django-plus)
[![downloads](https://pepy.tech/badge/strawberry-django-plus)](https://pepy.tech/project/strawberry-django-plus)
[![PyPI version](https://img.shields.io/pypi/v/strawberry-django-plus.svg)](https://pypi.org/project/strawberry-django-plus/)
![python version](https://img.shields.io/pypi/pyversions/strawberry-django-plus.svg)
![django version](https://img.shields.io/pypi/djversions/strawberry-django-plus.svg)

Enhanced Strawberry integration with Django.

Built on top of [strawberry-django](https://github.com/strawberry-graphql/strawberry-graphql-django)
integration, enhancing its overall functionality.

Features

	All supported features by strawberry and strawberry-django.

	[Query optimizer extension](#query-optimizer-extension) that automatically optimizes querysets
(using only/select_related/prefetch_related) to solve graphql N+1 problems, with support
for fragment spread, inline fragments, @include/@skip directives, prefetch merging, etc

	[Django choices enums using](#django-choices-enums) support for better enum typing (requires
[django-choices-field](https://github.com/bellini666/django-choices-field))

	[Permissioned resolvers](#permissioned-resolvers) using schema directives, supporting both
[django authentication system](https://docs.djangoproject.com/en/4.0/topics/auth/default/),
direct and per-object permission checking for backends that implement those (e.g.
[django-guardian](https://django-guardian.readthedocs.io/en/stable])).

	[Mutations for Django](#django-mutations), with CRUD support and automatic errors validation.

	[Relay support](#relay-support) for queries, connections and input mutations, all integrated with
django types directly.

	[Django Debug Toolbar integration](#django-debug-toolbar-integration) with graphiql to
display metrics like SQL queries

	Improved sync/async resolver that priorizes the model’s cache to avoid have to use
[sync_to_async](https://docs.djangoproject.com/en/4.0/topics/async/#asgiref.sync.sync_to_async)
when not needed.

	A well typed and documented API.

Installation

Install it with pip:

`shell
pip install strawberry-django-plus
`

Introduction

Since this lib has a long name, it does provide a shortcut called gql where all of
strawberry’s API and ours can be accessed.

```python
from strawberry_django_plus import gql

# All strawberry’s base api can be found directly on gql, like:
gql.type  # same as strawberry.type
gql.field  # same as strawberry.field
…

# The strawberry-django API and our custom implementation can be found on gql.django, like:
gql.django.type
gql.django.field
…

# We also have a custom relay implementation in here:
gql.relay
```

How To

Query optimizer extension

The automatic optimization is enabled by adding the DjangoOptimizerExtension to your
strawberry’s schema config.

```python
import strawberry
from strawberry_django_plus.optimizer import DjangoOptimizerExtension


	schema = strawberry.Schema(
	Query,
extensions=[


# other extensions…
DjangoOptimizerExtension,




]






)

Now consider the following:

```python
models.py

	class Artist(models.Model):
	name = models.CharField()

	class Album(models.Moodel):
	name = models.CharField()
release_date = models.DateTimeField()
artist = models.ForeignKey(“Artist”, related_name=”albuns”)

	class Song(models.Model):
	name = model.CharField()
duration = models.DecimalField()
album = models.ForeignKey(“Album”, related_name=”songs”)

schema.py
from strawberry_django_plus import gql

@gql.django.type(Artist)
class ArtistType:

name: auto
albums: “List[AlbumType]”

@gql.django.type(Album)
class AlbumType:

name: auto
release_date: auto
artist: ArtistType
songs: “List[SongType]”

@gql.django.type(Song)
class SongType:

name: auto
duration: auto
album_type: AlbumType

@gql.type
class Query:

artist: Artist = gql.django.field()
songs: List[SongType] = gql.django.field()


```

This query for the artist field:

```gql
{

	artist {
	id
name
albums {

id
name
songs {

id
name

}

}

}

}

Will generate an optimized query like this:

```python
Artist.objects.all().only(“id”, “name”).prefetch_related(



	Prefetch(
	“albums”,
queryset=Album.objects.all().only(“id”, “name”).prefetch_related(


“songs”,
Song.objects.all().only(“id”, “name”),




)





),






)

Querying a song and its related fields like this:

```gql
{

	song {
	id
album
id
name
artist {

id
name
albums {

id
name
release_date

}

}

}

}

Will generate an optimized query like this:

```python
Song.objects.all().only(


“id”,
“album”,
“album__id”,
“album__name”,
“album__release_date”,  # Note about this below
“album__artist”,
“album__artist__id”,





	).select_related(
	“album”,
“album__artist”,



	).prefetch_related(
	“album__artist__albums”,
Prefetch(


“albums”,
Album.objects.all().only(“id”, “name”, “release_date”),




)







)

Note that even though album__release_date field was not selected here, it got selected
in the prefetch query later. Since Django caches known objects, we have to select it here or
else it would trigger extra queries latter.

It is also possible to include hints for non-model fields using the field api or even our
@model_property (or its cached variation, @cached_model_property) decorator on the model
itself, for people who likes to keep all the business logic at the model.

For example, the following will automatically optimize only and select_related if that
field gets selected:

```python
from strawberry_django_plus import gql

	class Song(models.Model):
	name = models.CharField()

@gql.model_property(only=[“name”, “album__name”], select_related=[“album”])
def name_with_album(self) -> str:

return f”{self.album.name}: {self.name}”

@gql.django.type(Song)
class SongType:

name: auto
name_with_album: str


```

Another option would be to define that on the field itself:

```python
@gql.django.type(Song)
class SongType:

name: auto
name_with_album: str = gql.django.field(

only=[“name”, “album__name”],
select_related=[“album”],

)


```

### Django Choices Enums

Convert choices fields into GraphQL enums by using
[Django Choices Field](https://github.com/bellini666/django-choices-field) extension.

```python
from django_choices_field import TexChoicesField

	class Song(models.Model):
	
	class Genre(models.TextChoices):
	ROCK = “rock”, “Rock’n’Roll”
METAL = “metal”, “Metal”
OTHERS = “others”, “Who Cares?”

genre = TextChoicesField(choices_enum=Genre)


```

In that example, a new enum called Genre will be created and be used for queries
and mutations.

If you want to name it differently, decorate the class with @gql.enum with your preferred
name so that this lib will not try to register it again.

### Permissioned resolvers

Permissioning is done using schema directives by applying them to the fields that requires
permission checking.

For example:

```python
@strawberry.type
class SomeType:

	login_required_field: RetType = strawberry.field(
	# will check if the user is authenticated
directives=[IsAuthenticated()],

)
perm_required_field: OtherType = strawberry.field(

will check if the user has “some_app.some_perm” permission
directives=[HasPerm(“some_app.some_perm”)],

)
obj_perm_required_field: OtherType = strawberry.field(

will check the permission for the resolved value
directives=[HasObjPerm(“some_app.some_perm”)],

)


```

Available options are:


	IsAuthenticated: Checks if the user is authenticated (user.is_autenticated)


	IsStaff: Checks if the user is a staff member (user.is_staff)


	IsSuperuser: Checks if the user is a superuser (user.is_superuser)


	HasPerm(perms: str, list[str], any: bool = True): Checks if the user has any or all of
the given permissions (user.has_perm(perm))


	HasRootPerm(perms: str | list[str], any: bool = True): Checks if the user has any or all
of the given permissions for the root of that field (user.has_perm(perm, root))


	HasObjPerm(perms: str | list[str], any: bool = True): Resolves the retval and then
checks if the user has any or all of the given permissions for that specific value
(user.has_perm(perm, retval)). Note that if the return value is a list, this directive
will filter the return value, removing objects that fails the check (check below for more
information regarding other possibilities).




There are some important notes regarding how the directives handle the return value:


	If the user passes the check, the retval is returned normally


	If the user fails the check:
- If the return type was Optional, it returns None
- If the return type was a List, it returns an empty list
- If the return type was a relay Connection, it returns an empty Connection
- If the field is a union with types.OperationInfo or types.OperationMessage, that type


is returned with a kind of PERMISSION, explaining why the user doesn’t have permission
to resolve that field.





	Otherwise, it raises a PermissionError for that resolver, which will be available at
the result’s errors field.








Note that since strawberry doesn’t support resolvers for schema directives, it is necessary
to use this lib’s custom extension that handles the resolution of those and any other custom
defined schema directive inherited from strawberry_django_plus.directives.SchemaDirectiveResolver:

```python
import strawberry
from strawberry_django_plus.directives import SchemaDirectiveExtension

	schema = strawberry.Schema(
	Query,
extensions=[

SchemaDirectiveExtension,
other extensions…

]

)

Django mutations

This lib provides 3 CRUD mutations for create/update/delete operations, and also a facility
for creating custom mutations with automatic ValidationError support.

CRUD mutations

	gql.django.create_mutation: Will create the model using the data from the given input,
returning a types.OperationInfo if it fails with all raised ValidationError data.

	gql.django.update_mutation: Will update the model using the data from the given input,
returning a types.OperationInfo if it fails with all raised ValidationError data.

	gql.django.delete_mutation: Will delete the model using the id from the given input,
returning a types.OperationInfo if it fails with all raised ValidationError data.

A simple complete example would be:

```python
from strawberry_django_plus import gql

@gql.django.type(SomeModel)
class SomeModelType(gql.Node):


name: gql.auto




@gql.django.input(SomeModelType)
class SomeModelInput:


name: gql.auto




@gql.django.partial(SomeModelType)
class SomeModelInputPartial(gql.NodeInput):


name: gql.auto




@gql.type
class Mutation:


create_model: SomeModelType = gql.django.create_mutation(SomeModelInput)
update_model: SomeModelType = gql.django.update_mutation(SomeModelInputPartial)
delete_model: SomeModelType = gql.django.delete_mutation(gql.NodeInput)




```

Custom model mutations

It is possible to create custom model mutations with gql.django.input_mutation, which will
automatically convert the arguments to a input type and mark the return value as a union
between the type annotation and types.OperationInfo. The later will be returned if
the resolver raises ValidationError.

For example:

```python
from django.core.exceptions import ValidationError
from strawberry_django_plus import gql

@gql.type
class Mutation:


@gql.django.input_mutation
def set_model_name(self, info, id: GlobalID, name: str) -> ModelType:


obj = id.resolve_node(info)
if obj.some_field == “some_value”:


raise ValidationError(“Cannot update obj with some_value”)




obj.name = name
obj.save()
return obj







```

Relay Support

We have a custom [relay spec](https://relay.dev/docs/guides/graphql-server-specification/)
implementation. It is not tied to Django at all to allow its usage with other types.

It provides types and fields for node and connection querying. For example:

```python
# schema.py
from strawberry_django_plus import gql
from strawberry_django_plus.gql import relay

@gql.type
class Fruit(relay.Node):


name: str


	def resolve_node(cls, node_id, info, required=False):
	…



	def resolve_nodes(cls, node_id, info, node_ids=False):
	…








@gql.type
class Query:


fruit: Optional[Fruit] = relay.node()
fruits_connection: relay.Connection[Fruit] = relay.connection()

@relay.connection
def fruits_connection_filtered(self, name_startswith: str) -> Iterable[Fruit]:


# Note that this resolver is special. It should not resolve the connection, but
# the iterable of nodes itself. Thus, any arguments defined here will be appended
# to the query, and the pagination of the iterable returned here will be
# automatically handled.
…







```

Will generate a schema like this:

```gql
interface Node {


id: GlobalID!




}


	type Fruit implements Node {
	id: GlobalID!
name: String!





}


	type FruitEdge implements Node {
	cursor: String!
node: Fruit





}


	type FruitConnection {
	edges: [ShipEdge!]!
pageInfo: PageInfo!





}


	type PageInfo {
	hasNextPage: Boolean!
hasPreviousPage: Boolean!
startCursor: String
endCursor: String





}


	type Query {
	fruit(id: GlobalID!): Fruit
fruits_connection(


before: String
after: String
first: Int
last: Int




): FruitConnection
fruits_connection_filtered(


before: String
after: String
first: Int
last: Int
nameStartswith: String!




): FruitConnection







}

It is expected that types implementing the Node interface define some methods, like
resolve_nodes and resolve_node. Take a look at
[the documentation](/strawberry_django_plus/relay.py) for more information.

Also note that Django fields created with @gql.django.type automatically implements
all of the required methods when the type inherits from Node.

This module also exposes a mutation that converts all of its arguments to a single input.
For example:

```python
@gql.type
class Mutation:

@relay.input_mutation
def create_fruit(name: str) -> Fruit:


```

Will generate those types:

```gql
input CreateFruitInput {

name: String!

}

	type Mutation {
	createFruit(input: CreateFruitInput!): Fruit

}

Django Debug Toolbar Integration

Install [Django Debug Toolbar](https://github.com/jazzband/django-debug-toolbar)
and change its middleware from:

```python
MIDDLEWARE = [


…
“debug_toolbar.middleware.DebugToolbarMiddleware”,
…






]

To:

```python
MIDDLEWARE = [

…
“strawberry_django_plus.middlewares.debug_toolbar.DebugToolbarMiddleware”,
…

]

Contributing

We use [poetry](https://github.com/sdispater/poetry) to manage dependencies, to
get started follow these steps:

`shell
git clone https://github.com/blb-ventures/strawberry-django-plus
cd strawberry
poetry install
poetry run pytest
`

This will install all the dependencies (including dev ones) and run the tests.

Pre commit

We have a configuration for
[pre-commit](https://github.com/pre-commit/pre-commit), to add the hook run the
following command:

`shell
pre-commit install
`

Licensing

The code in this project is licensed under MIT license. See [LICENSE](./LICENSE)
for more information.

Stats

![Recent Activity](https://images.repography.com/23718985/blb-ventures/strawberry-django-plus/recent-activity/bf7c25def67510b494ac7981e0f4082c.svg)

 nav.xhtml

 Table of Contents

 		
 Welcome to Read the Docs

_static/plus.png

_static/file.png

_static/minus.png

